TEXT А

Structured programming is a technique that reduces a program's complexity, increases its clarity, and results in easy maintenance.

Structured programming, if the current level of interest and controversy within the computing community is any measure, is an idea whose time has come. You hear about it at conferences, there is increasing mention of the concept in the literature, and, very likely, there are numerous hallway discussion groups trying to unravel the difference between what it and isn't structured programming.

Some of the early successes reported to have been achieved with structured programming techniques include spectacular increases in programmer productivity and correspondingly spectacular decreases in overall software system error rates. One spokesman is reported to have announced that with structured programming "...we have observed programmer error rates on the order of one per programmer man-year, or one per 10,000 lines of code. "This statement, when viewed against the current increasing concern for the unreliability of software — and what to do about it — suggests that something more than a simple technique is involved. If that kind of productivity and reliability is involved, further study of the techniques which produced it is certainly warranted.

In a very general way, structured programming is a reflection of the concern with form and the interrelationship which exist between the attributes of a "good" program and what the program is supposed to do. Thus, the intense interest in structured programming may be a manifistation of a coming maturation of computing, which is intrinsically a human activity.

TEXT В

No one "invented" structured programming. A few people, however, have contributed to its developing by providing enthusiasm for the idea. Certainly, E. W. Dijkstra can be considered the common-law father of some of the underlying concepts. The now-famous "GOTO letter", which warned that GOTO statements were potentially hazardous to the state of mind of programmers charged with debugging complex and intertwined codes, was the starting point for much of the current interest. Subsequently, Dijkstra's "Notes on Structured Programming" has been widely circulated in the underground press, and has converted many a soul to Dijkstra's version of "right thinking". Along the way, a slightly different thrust — one which dealt with the necessity for certain degrees of clarity of thought during the design (and possibly during the implementation) phases of software system design — surfaced in Dijkstra's description of the "THE" operating system. These two concepts will be discussed in detail later on.

A slightly different approach, which falls into the category of structured programming was that described by F. T. Baker. That technique, called the "chief programmer team" approach to system design and system implementation, was used with startling success in an IBM programming effort on behalf of the NEW YORK TIMES; IBM implemented a complex information retrieval system using only a handful of highly skilled programmers, all under the direction of a chief programmer, in a rather short time. More importantly, it is claimed that the resulting software system had virtually no errors and has run satisfactorily from the day it was implemented. The approach used combined good management with the use of special-structured programming techniques.

Some basic notions about what constitutes structured programming have evolved from these sources. The main ideas seem to be: 1. The construction of programs without the use of GOTO statements (and, consequently, without the necessity for statement labels). This may require certain extensions to the more common procedure language, as will be made clear below. 2. The use of strict rules for the top-down design and implementation of a system of programs, and the requirement that the components adhere to a hierarchical form as much as possible. 3. The generalization of the notion of "abstract resource", so that a hierarchically organized software system obeys some additional rules about the way it performs operations on the "object" it manipulates.

At the current time it is not possible to say which of these is the basis of structured programming. Indeed, the concept may be an amalgam of these and other ideas, but each is rich enough to require some additional explanation.

