TEXT B

Recent shifts in emphasis have occurred in the field of software development. The primary requirement to be met in software development has always been to perform the function specified for the software. But, where at one time secondary emphasis was placed only on software efficiency, that is core and time required, today three other factors are recognized as requiring special emphasis. Three factors are reliability, maintainability, and extensibility. The emphasis on these factors has increased because their economic importance has been recognized. Software maintenance and modification account for a substantial portion of total software expendetures and, as the volume of existing software grows, so does the expense of maintenance and modification. This trend can be counteracted by designing and implementing" software in a way that minimizes errors and maximizes the ease with which errors are corrected and modifications are made; hence, reliability, maintainability, and extensibility. While much work is needed to determine how best to design and implement software with these characteristics, there are already some techniques known that contribute materially to these aims.

The development of these new techniques has been motivated by a desire to reduce the cost of developing and maintaining software. The technique discussed in this article does so by reducing a program complexity and increasing its clarity. The high cost of programming today is due in large measure to the complexity of the programs. As a result of this complexity, the program development process is characterized by a large number of mistakes and a great waste and rework. To the practicing programmer this may not seem like an accurate description; certainly it is pessimistic one. But when you step back and look at the programming process from the proper perspective and compare it with other scientific disciplines, you find the picture is bleak.

Program complexity causes problems not only during development but also during maintenance of a program. When a program must be modified to correct a bug or provide a new feature, the complexity of the program makes its operation hard to decipher — even if the person doing the maintenance developed the program originally. Furthermore, once the program is deciphered, inserting the change and insuring that it works correctly is made difficult by program complexity. The expense of program maintenance is becoming more important as the volume of programs in existence increases. Use of the technique described in this article can reduce the cost of maintenance dramatically — say, by 50%.

Improvement in program clarity also benefits program development and maintenance. Program clarity is its "understanability"; that is, the ease with which a person unfamiliar with the program (it may even be the original developer) reads a code to determine what it does and how it operates. Improved program clarity will decrease the cost of program development and maintenance.

Reduced program complexity can be thought of as a process of removing things from the program: obscure structures, complicated control paths, redundant and obsolete code, meaningless notes, etc. Improving program clarity can be thought of as a process of adding things to the program: selfexplanatory labels, good notes, code layout, and indentation that has information content for the reader, more levels of modularity, etc.

A technique known as structured programming has been developed which offers improvements in both program complexity and program clarity. Structured programming is a manner of organizing and coding programs that makes the programs easily understood and modified. Easy modification in turn permits easy maintenance of the product and easy building of a new product using this product as a base. Much has been written about structured programming in the last couple of years and its definition varies from writer to writer. However, the fundamental message is "simplify your control paths".

TEXT C

Much of a program's complexity arises from the fact that program contains many jumps to other parts of the program— jumps both forward and backward in the code. These jumps make it difficult to follow the logic of the program and difficult to be sure at any given point of the program what present conditions are (such as what the state of variables is, what other paths of the program have already been executed or are yet to be executed, etc.). Furthermore, as a program undergoes change during its development period, as it gets further debugged during its maintenance period, and as it gets modified in subsequent new projects, the complexity of the program grows alarmingly. New jumps are inserted, increasing the complexity. In some cases, new code is added because the programmer cannot find existing code that performs the desired function, or isn't sure how the existing code works, or is afraid to disturb the existing code for fear of undoing another desirable function, and the result, after many modifications, is a program that is nearly unintelligible. This is the software equivalent of being shop-worn, the time when it is better to throw the whole thing out and start over.

In a structured program, any program function can be performed using one of three control structures (see Fig. I):

I. simple sequence, 2. selection, 3. repetition. Any kind of processing, any combination of decisions, any sort of logic, can be accommodated with one or three control structures or a combination of these structures. Each structure is characterized by a simple and single point of transfer of control into the structure, and a single point of transfer of control out of the structure. These structures can be combined to form a program that is very simple in the sense that control flows from top to bottom or from beginning to end. There is no backtracking. The control structures can be nested as shown in Fig. 2, but they retain their characteristic of single-entry/single-exit.

The three control structures can be constructed in any programming language. Thus, structured programming can be practiced by anyone, although the difficulty of it varies with the language you are using. Some high-level languages have language features or constructs that correspond directly to these control structures. PL/I, for example, has IF-THEN-ELSE and DO constructs which perform selection and repetition functions, respectively. COBOL has IF-THEN-ELSE, and a PERFORM construct that performs the repetition function. FORTRAN has a simple IF construct, and a DO construct. Most other high-level languages have equivalent or closely equivalent capabilities. Structured programming can be approximated in assembly language particularly if a powerful macro facility is available, but if assembly language is used many of the benefits sought with structured programming are lost, as discussed below. In a high-level language with suitable capabilities, structured programming produces code that is very clear and intelligible.

Use of the three classical control structures of structured programming in their pure form results in inefficiency in two situations. This inefficiency is avoided through the use of a variant of the selection structure and a slight relaxation of the single-exit rule. The first situation is that handled in conventional programming by computed-GOTO's or switches; the case where only one of a series of functions is to be performed depending on the value of a variable. This is really a generalization of the selection function (IF-THEN-ELSE) from a two-valued to a multivalued operation as shown in Fig. 31 The second situation arises when the programmer wishes to terminate a repetition block abnormally, as in Fig. 4., and the languages do not explicitly allow this.

Although such abnormal termination violates the single-entry/single-exit rule of structured programming, it may produce significant savings in space and time. If properly flagged, this practice maintains the spirit of structured programming.

