TEXT A


Structured programming is a major intellectual invention, one that will come to be ranked with the concept of a program for the execution of a well-defined algorithm or even the stored program concept.


What is structured programming? Extravagant claims have been heard for several years, but few people would venture a definition. In fact, it is not clear that there exists a simple definition as yet, but several threads seem to run through the discussion.


The theoretical framework is usually traced to a paper by Bohm and Jacopini. They showed that it is possible to write any complete specification of a process to be performed on data using only three structures: 1. Simple sequence; in the absence of instructions to the contrary, certain types of instructions are executed in the order written. 2. IF-THEN-ELSE; combine with statement brackets (begin and end) so that groups of statements can be included in the THEN and ELSE clauses. In fact the THEN and ELSE clauses may con-tain any three structures, recursively. 3. A loop control mechanism such as DO-WHILE or DO-UNTIL.


Using only these constructions, assuming that they are available in the language being used or somehow be simulated, it is possible to write programs that can be read from top to bottom without ever branching back to something earlier. The GOTO statement is not needed at all, although most people would admit that there are occasional situations where efficiency dictates its use. Programs are accordingly much-easier to read and understand.

Sometimes the elimination or minimization of GOTO's is presented as the whole point of structured programming, but that is getting the matter backwards. The real situation is that when the three basic structures are used correctly, there

simply isn't much occasion to consider using GOTO.

Harlan Mills extended this result by adding the requirement that a program module has only one entry point and one-exit point; with this restriction it becomes possible to prove whether a program is correct. Program proving isn't yet a practical matter for programs of realistic size, but the theory influences the daily practice of programming anyway.

A set of conventions, the details of which depend on the language being used, dictate how to indent program statements so as to make the structure more obvious to the reader of the program. A simple example from Formular-Translating Language is to indent all the statements in the range of a DO by some consistent amount; DO's within DO's are further indented, and so forth.

It seems to be a matter of disbelief in some quarters that such a simple idea as consistent indentation could make much difference, but the practical experience of lots of programmers is that it does. It may in fact make the program harder to write, but the reading is greatly simplified. And when a program has to be maintained it is the reading that is crucial. Following such a practice also makes it much easier for another programmer to check a program for correctness.

Large projects in the past have had reported coding rates in the range of two or three statements per man-day. Since it would be difficult to spend more than ten minutes writing three statements, it is clear that a lot of time was being wasted, presumably in tracing and eliminating mistakes in a program or faults in equipment and recording modules that didn't interface properly with other modules. Structured programming, together with the idea of top-down programming, greatly reduces this waste. The net effect is that although the initial putting in the form of symbols of a code is harder, overall programming efficiency goes up dramatically.

It has been said that skilled programmers have pretty much been using structured programming for years, anyway. This isn't really true. The discipline imposed by using only the three basic program structures and following indentation rules rigidly, improves the performance of even the best programmers. Perhaps more important, it can greatly enhance the effectiveness of the rest of us, who sometimes program in a rather sloppy way if left to our own devices.

Historically, recognition of the idea of structured programming seems to date from a famous letter in the Communications of the ACM by Professor E. W. Dijkstra of the Netherlands. The title attached to the letter, published in March of . 1968, was "GOTO Statement Considered Harmful". The letter attracted considerable attention and puzzlement at the time. I well remember asking people, "Do you understand what Dijkstra is talking about?" The representative answer was: "I'm sure it's important, but I don't really quite understand it". This perplexity was caused in part by the fact that some of the few published articles were rather difficult to obtain, and circulated in a sort of underground literature.

So long as the matter seemed to be a theoretical issue that most people could not quite get a good grasp of, nothing much happened. Then came the IBM work for the New York Times, with reports of greatly increased programmer productivity and very greatly reduced coding error rates (one detected error per 10,000 lines of coding or one per man-year)! Absolutely incredible, but these were the facts. The IBM project involved more than just structured programming, to be sure, notable the concept of F. T. Baker of the chief programmer team. But the participants assure me that structured programming was most definitely part of the reason for the amazing results.

What was for a few years an underground ivory tower — to mix metaphors a bit — has now come out in the open as a very important thing indeed. The practicality of the theory has been demonstrated in a fashion that simply cannot be ignored, and one hears of lots of demonstration projects underway, elsewhere within IBM and in many other organizations.

This is a development that could revolutionize programming in several ways. The most obvious benefits are increased productivity and reduced error rates. Programming is perhaps on the verge of becomming a science instead of a craft. The analogy has been made that the people who work with apparatus and associated data carriers have known for years that any logic circuit can be made up from a few basic primitives, such as "and" and "or" operations. Programming is now approaching something of the same maturity.

There will also be a strong effect on the use of procedure-oriented languages. Of those in wide use today, only ALGOL and PL/I are anywhere close to suitable for easy use in structured programming. Applying these ideas even in FORTRAN will make for better FORTRAN programs, but it is clear that FORTRAN is not an ideal language for structured programming. And since ALGOL, sad to say, has not caught on in a big way in the U. S., that leaves PL/I, I predict that within the three-to-five-year future, there will be at long last, a swing to PL/I precisely because it is well-suited for structured programming.

