TEXT B

The differences between ALGOL 60 and Burroughs ALGOL lead to translation problems. Perhaps the most important difference is the way in which the scope of variables is handled. In ALGOL 60 a block of a program is delimited by BEGIN ... END. Every block automatically introduces a new level of nomenclature. Thus any identifier which is declared within a block is local to the block in question. This means that the entity represented by this identifier outside the block is completely inaccessible inside the block. Identifiers (except labels) occuring within a block and not being declared to this block will be nonlocal to it, i. e. will represent the same entity inside the block and in the level immediately outside it. Procedure declaration in no way alter this situation — localization is determined by a declaration within a block. In Burroughs ALGOL, on the other hand, all identifiers represent the same entity throughout a program except in procedures. Localization is determined by means of procedure declaration. An entity represented by an identifier inside the procedure has no existence outside the procedure. If the same identifier is used inside and outside the procedure, it has totally different meanings inside and outside. The only communication between the program statements inside and outside a procedure is accomplished by listing the appropriate identifiers in the procedure heading.

In Burroughs ALGOL procedures may not be nested whereas in ALGOL they may be. This causes no trouble in translating from BALGOL to "ALGOL 60 but if an ALGOL 60 program does contain nested procedures the nesting must be destroyed and the procedures declared separately and independently in a suitable order. In writing the procedures special care must be taken to determine which variables are local and which are global; indeed, in translation from ALGOL 60 to BALGOL it is neccessary to determine which variables are global and consequently have the same meaning within a procedure as outside it. In order to make these variables global in BALGOL they must be listed in the procedure heading as input or output variables as appropriate. In order to make an ALGOL 60 program easy to translate to BALGOL it is convenient if, in a procedure, the global variables are declared in a comment. Translation from BALGOL to ALGOL 60 is easier in this respect as one needs only declare the local variables within the block which constitutes the procedure.

The handling of functions is not quite the same in the two systems, in fact, in BALGOL one may use a function declaration in order to define a function if it can be defined by an expression but there is no counterpart of this in ALGOL 60. Rather, any function is defined as a procedure whether it is a single expression or requires several steps for its calculation. Exactly the same could be done in BALGOL; we merely

have the extra alternative of a function declaration for single expressions. The function declaration in BALGOL is like the procedure declaration in ALGOL 60 in that variables not mentioned in the heading are global, whereas in the procedure declaration in BALGOL such variables are local.

In ALGOL 60 arrays and simple variables may be called either by value or by name. However, in BALGOL arrays can be called only by name and not by value.

Moreover, in BALGOL call by name is quite restricted and

one cannot, for example, do such a general type of replacement

as is indicated in the example of the interproduct procedure in

the ALGOL 60 report. Recursive procedures are permitted in

ALGOL 60 and not in BALGOL.

Arrays in BALGOL must have constant size. Their size must be specified at compile time; they cannot be fixed as a result of a calculation. On the other hand this is permitted in ALGOL, thus permitting economy in storage assignment. In translating to BALGOL or writing in BALGOL one must determine in advance the maximum size of each array to be used.

In addition to these rather important differences which make considerable care necessary in translation from one language to the other there are a number of minor differences between the languages. Only a few of these will be mentioned. In ALGOL 60 subscripts of arrays may be positive, negative or zero whereas in BALGOL they must always begin at I and go up. The notation for iteration statements is the same in both languages, namely, if one desires to execute a statement S (simple or compound) for values of a parameter j running from I to n by increments of I one writes in ALGOL 60

for j: = I step I until n do S;

In BALGOL the same effect would be obtained by writing

for j=(I, I, n); S;

In ALGOL 60 Boolean variables may assume the values true or false but in BALGOL these values are replaced by 1 and 0 respectively. It seems unnecessary to continue this list of minor differences.

It appears likely that we could translate from BALGOL to ALGOL 60 in a mechanical fashion. Also a mildly restricted version of ALGOL 60 could probably be translated mechanically to BALGOL, but it is clearly more complicated than a simple transliteration, indeed, one might restrict ALGOL 60 by forbidding nesting of procedures, and forbidding variable subscript bounds in arrays. The use of call be name would also have to be restricted. At present, no plans for such a mechanical translator exist. In translating from ALGOL 60 to BALGOL it is probably desirable for someone to do it with enough understanding to correct errors and to take advantage of any 220 features which would inmprove the running of the program on this computer. Translation of a running BALGOL program to ALGOL 60 for publication should be done with as few changes as possible in order to minimize the introduction of errors.

