
The essence of computer programming is the encoding of algorithms for subsequent execution on automatic computing machines. The notion of algorithm is one of the basic ideas in mathematics and has been known since antiquity.

An algorithm is a list of instructions specifying a sequence of operations which will give the answer to any problem of a given type.

Algorithms have several properties of interest: 1. In general, the number of operations which must be performed in solving a particular problem is not known beforehand; it depends on the particular problem and is discovered only during the course of computation; 2. The procedure specified by an algorithm is a deterministic process which can be repeated successfully at any time and by anyone; it must be given in the form of finite list of instructions giving the exact operation to be performed at each stage of the calculation; and 3. The instructions comprising an algorithm define calculations which may be carried out on any appropriate set of initial data and which, in each case, give the correct result. In other words, an algorithm tells how to solve not just one particular problem, but a whole class of similar problems.

The design of modern computing machines parallels the algorithmic nature of most practical applications. The computer operates under control of a series of instructions which reside in internal storage and are interpreted and executed by the circuitry of the arithmetic and control parts of the machine. The instructions are usually primitive in nature, each being composed basically of an operation and one or more operands or modifiers, and exist in a form chosen for the internal representation of data. Machine instructions which exist in this form are said to be in machine language, since they are numerically coded and directly executable by a specific computer.

Similar to both an algorithm and a sequence of machine language instructions is the concept of a computer program (usually referred to as a program), which can be defined as follows: A program is a meaningful sequence of statements, possessing an implicit or explicit order of execution, and specifying a computer-oriented representation of an algorithmic process.

Statements, in turn, are strings of symbols from a given alphabet, composed of letters, digits, and special characters. The form of each statement obeys a set of rules (syntax) and possesses an operational meaning (semantics). Collectively, the alphabet, syntax, and semantics are termed a language. Clearly, a machine language has an alphabet of internal machine codes, a primitive syntax of operations, operands, and modifiers, and semantic rules determined by the circuitry of the machine. Although machine languages provide for economy of construction, they are usually inconvenient for direct human use for a variety of reasons. The set of basic operations provided is not, in general, directly suited to the execution of commonly needed procedures, and the representation of operands, i. e. numeric addresses, affords little mnemonic advantage. The mechanics of constructing programs are also cubersome in that all constituents of the program must be written in some numeric code, and all addresses written in this code must be absolutely defined. This poses problems in transforming the coded instructions into a machine-readable form, in reading a program into the computer for execution, and finally in modifying programs in combining separate programs.

As a result of these inherent difficulties, programming languages and operating systems have been developed which significantly reduce the inconveniences involved in the programming of computers.

It is entirely possible, on the other hand, to define languages for computer programming with the following advantages: 1. They are more suitable for human use than machine languages; 2. They tend to be associated in some sense with the problems under consideration; 3. They are designed to facilitate computer programming. As in ordinary mathematical notation, rules are required for representing data, for naming and referencing data (variables), and for specifying operations (operators). Moreover, these program constituents are referred to symbolically, rather than in a form more closely related to machine language. For this reason, programming languages are often called symbolic languages, although this terminology is usually reserved for assembler languages, which will be discussed shortly. One of the features that promulgated the wide-spread acceptance of programming languages is the fact that computer programs written in this more convenient form could be translated to machine language or to a form closely akin to machine language by another computer program running on the same or possible a different machine. One of the significant aspects of the philosophy behind the use of programming languages and translation programs is the fact that the same machine may process programs written in many different languages, provided that a translator program is available for each language.

The most primitive type of programming language is known as assembler language, which provides commands or operations that are very similar to the machine language of the computer being programmed. Operations codes, which are expressed numerically in machine language, may be represented by symbolic equivalents (often called mnemonics); similarly, symbols are also used to represent locations in main storage. It follows, therefore, that storage locations and modifiers which are used in computer instructions may also be denoted symbolically. An assembler language also contains facilities for establishing constants and storage areas, for communicating with the assembler program itself, and possibly for incorporating sets of standard instruction sequences into the machine language text. A very basic syntax is used with assembler language with each line of coding being composed of two basic fields: the statement field and the identification-sequence field. It follows that a statement in assembler language consists of one to four entries in the statement field. They are from left to right: location, operation, operand, and comments; the coding form for assembler language programming is designed accordingly.

If the assembler language is used in conjunction with a one-address computer, then the operand field tends to reflect this design. This is also true for multiple-address machines and machines with many accumulators. Because of the close correspondence between assembler language and actual machine language, the translation process is not considered to be a major task.

